ComputeModelStatistics¶
- 
class 
ComputeModelStatistics.ComputeModelStatistics(evaluationMetric='all', labelCol=None, scoredLabelsCol=None, scoresCol=None)[source]¶ Bases:
mmlspark.Utils.ComplexParamsMixin,pyspark.ml.util.JavaMLReadable,pyspark.ml.util.JavaMLWritable,pyspark.ml.wrapper.JavaTransformerComputeModelStatisticsreturns the specified statistics on all the models specifiedThe possible metrics are:
Binary Classifiers:
- “AreaUnderROC”
 - “AUC”
 - “accuracy”
 - “recall”
 - “all”
 
Regression Classifiers:
- “mse”
 - “rmse”
 - “r2”
 - “all”
 
Parameters: - evaluationMetric (str) – Metric to evaluate models with (default: all)
 - labelCol (str) – The name of the label column
 - scoredLabelsCol (str) – Scored labels column name, only required if using SparkML estimators
 - scoresCol (str) – Scores or raw prediction column name, only required if using SparkML estimators
 
- 
getEvaluationMetric()[source]¶ Returns: Metric to evaluate models with (default: all) Return type: str 
- 
getScoredLabelsCol()[source]¶ Returns: Scored labels column name, only required if using SparkML estimators Return type: str 
- 
getScoresCol()[source]¶ Returns: Scores or raw prediction column name, only required if using SparkML estimators Return type: str 
- 
setEvaluationMetric(value)[source]¶ Parameters: evaluationMetric (str) – Metric to evaluate models with (default: all) 
- 
setParams(evaluationMetric='all', labelCol=None, scoredLabelsCol=None, scoresCol=None)[source]¶ Set the (keyword only) parameters
Parameters: - evaluationMetric (str) – Metric to evaluate models with (default: all)
 - labelCol (str) – The name of the label column
 - scoredLabelsCol (str) – Scored labels column name, only required if using SparkML estimators
 - scoresCol (str) – Scores or raw prediction column name, only required if using SparkML estimators