RankingTrainValidationSplit¶
- 
class 
RankingTrainValidationSplit.RankingTrainValidationSplit(estimator=None, estimatorParamMaps=None, evaluator=None, seed=None)[source]¶ Bases:
pyspark.ml.base.Estimator,pyspark.ml.tuning.ValidatorParams- 
copy(extra=None)[source]¶ Creates a copy of this instance with a randomly generated uid and some extra params. This copies creates a deep copy of the embedded paramMap, and copies the embedded and extra parameters over.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance 
- 
getItemCol()[source]¶ Returns: column name for item ids. Ids must be within the integer value range. (default: item) Return type: str 
- 
getUserCol()[source]¶ Returns: column name for user ids. Ids must be within the integer value range. (default: user) Return type: str 
- 
itemCol= Param(parent='undefined', name='itemCol', doc='itemCol: column name for item ids. Ids must be within the integer value range. (default: item)')¶ 
- 
ratingCol= Param(parent='undefined', name='ratingCol', doc='ratingCol: column name for ratings (default: rating)')¶ 
- 
setItemCol(value)[source]¶ Parameters: itemCol (str) – column name for item ids. Ids must be within the integer value range. (default: item) 
- 
setParams(estimator=None, estimatorParamMaps=None, evaluator=None, seed=None)[source]¶ setParams(self, estimator=None, estimatorParamMaps=None, evaluator=None, numFolds=3, seed=None): Sets params for cross validator.
- 
setTrainRatio(value)[source]¶ Sets the value of
trainRatio.
- 
setUserCol(value)[source]¶ Parameters: userCol (str) – column name for user ids. Ids must be within the integer value range. (default: user) 
- 
trainRatio= Param(parent='undefined', name='trainRatio', doc='Param for ratio between train and validation data. Must be between 0 and 1.')¶ 
- 
userCol= Param(parent='undefined', name='userCol', doc='userCol: column name for user ids. Ids must be within the integer value range. (default: user)')¶ 
-